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A theoretical description of the low-Reynolds-number collision and rebound of two 
rigid or elastic spheres separated by a thin layer of viscous fluid with pressure- 
dependent physical properties is presented. It has previously been shown by Davis 
et al. (1986) that the hydrodynamic pressure which builds up  in the thin fluid layer 
must become large enough to elastically deform the spheres near the axis of 
symmetry, if they are to rebound subsequent to colliding. Under these extreme 
pressures, however, it is expected that the fluid may also compress and that its 
viscosity may increase by several orders of magnitude. It is shown that these 
pressure-dependent effects may significantly alter the minimum separation reached 
during approach of the spheres, as well as the maximum separation and relative 
velocity attained during rebound of the spheres. In particular, the pressure buildup 
during the collision process is predicted to become sufficiently large under some 
conditions so that the corresponding viscosity increase causes the fluid in the gap 
between the colliding spheres to behave nearly as a solid and to limit the close 
approach of the opposing surfaces. Also, the storage of energy via the compression 
of the fluid in the gap allows rigid spheres to bounce as this energy is released 
subsequent to their collision. However, it is found that this rebound is very weak 
relative to that which is predicted for elastic spheres. 

1. Introduction 
Energetic collisions between solid bodies in fluids are an integral part of many 

industrial and natural processes such as filtration, lubrication and erosion. In 
modelling the fundamental mechanisms which underlie these systems, i t  is necessary 
to establish criteria for whether the solid bodies will adhere or bounce apart after 
colliding. The original theory of Hertz and its extensions (see Love 1927 ; Dahneke 
1971 ; Loffler 1980) neglect the influence of the surrounding fluid, and predict that 
colliding spheres will adhere upon impact unless the incoming kinetic energy exceeds 
a critical value, based on an interparticle adhesive force and energy losses in the 
contacting solids. However, several workers (Tabor 1949 ; Butler 1960 ; Christensen 
1962 ; Finkin 1973) have observed experimentally that the presence of a lubricant 
may have a significant influence on the dynamics of colliding elastic bodies. 
Surprisingly, for impacts leaving a dent due to plastic deformation of the surfaces in 
these experiments, the deformations were found to be deeper in the presence of a 
lubricant than without. In order to explain this finding, Christensen (1970) 
developed the appropriate equations and presented an approximate numerical 
solution (valid only for relatively large separations) to the problem of elastic 
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deformation of two spheres in normal approach in an incompressible fluid. Assuming 
an exponential dependence of the viscosity on the hydrodynamic pressure, he showed 
that the changes in pressure due to  viscosity are concentrated in a small region near 
the axis of symmetry and dominate those resulting from elastic deformation until the 
separation between the approaching spheres becomes very small. Further, he found 
that the transition film thickness a t  which this change takes place is sharply defined 
and quite small, even compared to the surface roughness. These results were 
supported by Herrebrugh (1970) and Lee & Cheng (1973) who studied two lubricated 
cylinders moving toward one another under a constant force. Unfortunately, these 
elastohydrodynamic lubrication studies focused only on the approach portion of the 
collision and did not consider the possibility of rebound. 

Davis, Serayssol & Hinch (1986) were the first to consider both the deformation 
and rebound processes for two inertially driven, elastic spheres of arbitrary radii in 
near-contact, head-on motion in a viscous fluid under conditions of low Reynolds 
number. They showed that the large pressure that develops as the fluid is being 
squeezed outward from the gap has several effects. First, unless the inertia of the 
particles is very high, it opposes their relative motion and slows their approach. 
Second, it may cause the surfaces to deform in a small region around the axis of 
symmetry. When the latter occurs, a portion of the incoming kinetic energy of the 
particles becomes stored as elastic strain energy of deformation, and a portion is 
dissipated by viscous forces. If the elastic deformation is significant, the spheres may 
rebound after coming to rest, although the distance of rebound is limited because 
further viscous dissipation occurs as the surfaces recede and fluid flows back into the 
gap under suction. 

The magnitude of the pressure that develops during the collision, which may 
become as high as several hundred atmospheres or more a t  the axis of symmetry (see 
Tabor 1949), suggests that a Significant increase in the density and viscosity of the 
fluid in the gap may occur. An increase in the fluid viscosity may alter the collision 
dynamics by increasing the hydrodynamic pressure and viscous dissipation, though 
it cannot by itself store energy which can later be released for rebound. On the other 
hand, an increased fluid density may result in rebound of even perfectly rigid 
spheres, if enough of the kinetic energy of the spheres becomes stored in the 
compressed fluid, and then released during the subsequent expansion of the fluid. 
Motivated by these considerations, the study described in this paper makes 
quantitative predictions of the influences of the pressure-dependent fluid properties 
of density and viscosity on the collision between both rigid and elastic spheres in a 
viscous fluid. 

2. Theoretical development 
Figure 1 shows the area of contact of two elastic spheres as they approach each 

other along their line-of-centres. In the limit as the radius of one sphere goes to 
infinity, the problem becomes that of a sphere impacting a plane. We seek to describe 
the dynamic shape of the smooth, deformable particle surfaces and the hydrodynamic 
force resisting their relative motion as functions of radial position, gap thickness and 
properties of the particles and of the surrounding fluid. The complete mathematical 
development of the governing equations with constant fluid properties has been 
previously described (Davis et al. 1986) and is extended here to include the pressure 
dependence of the fluid density and viscosity. 
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FIGURE 1. Schematic of the deformed surfaces of two colliding spheres in a viscous fluid. The 
dashed lines represent the undeformed surfaces. 

The undeformed spherical surfaces can be approximated by paraboloids in the 
region of near contact, and the deformed gap profile is therefore given by 

r2 
2a 

h(r,  t )  = x( t )  +-+ w,(r, t ) ,  

where r denotes the radial distance from the centreline, x( t )  is the distance between 
the undeformed surfaces at the centreline as a function of time, and w,(r,t) = 
wS1+ws2 is the sum of the dynamic deformations of the solid surfaces from their 
original shape, where the subscript s denotes solid deformation and the subscripts 1 
and 2 refer to the two surfaces. 

As the spheres approach, a normal surface stress, f ( r , t ) ,  may arise from the 
hydrodynamic pressure in the fluid being squeezed out between their solid surfaces 
and from a disjoining pressure resulting from interparticle van der Waah attractive 
forces and electrostatic repulsive forces. This surface stress may slightly deform the 
solids, and, assuming that linear elasticity theory applies, the magnitude of the solid 
deformation, w,, can be determined by integrating the surface stress distribution 
multiplied by a Green’s function, $( r ,  y), over the area subjected to the stress: 

The parameter 6,  which contains the material properties of the elastic solids, and the 
kernel $(r ,y)  have been defined by Davis et al. (1986). 

The effects of a disjoining pressure arising from interparticle van der Waals 
attractive forces and electrostatic repulsive forces during the collision process have 
been recently evaluated by Serayssol &,Davis (1986). In  general, they found for 
particles with sufficient inertia to deform significantly that the hydrodynamic 
pressure dominates the disjoining pressure during the collision, though the attractive 
van der Waals forces may become significant during the last stages of approach when 
the surfaces are very close together. Consequently, in the present analysis, the 
surface stress is dominated by the hydrodynamic pressure (f x p ) ,  and the attractive 
van der Waals forces are assumed to be negligible. 
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The deformed shape of the particle surfaces cannot be determined without 
knowledge of the pressure profile in the fluid layer between the solid surfaces. Since 
we are primarily interested in the case where the surfaces are very close to one 
another, the fluid flow within the narrow gap between them is fully developed to 
leading order, and can be described by the lubrication equation of fluid dynamics 
which relates the rate of change of the gap size to the pressure: 

where p ( r ,  t )  is the pressure profile in the fluid layer, p ( p )  is the fluid viscosity, and 
p ( p )  is the fluid density. Note that the fluid inertia terms were assumed to be small 
in the derivation of (3). As discussed previously by Davis et al. (1986), this is valid 
provided that Re x / a  4 1, where the instantaneous Reynolds number is defined by 
Re = pva/,u, and v is the relative velocity of the two spheres. 

In order to solve (1)-(3) for the dynamic separation and hydrodynamic pressure, 
the functional dependence of density and viscosity on the pressure must be known. 
Studies by Grubih & Vinogradova (1949) show that the limit of the compression of 
viscous liquids such as mineral oil is about 25 %, giving a maximum density increase 
of about 33 %. An expression that closely fits the experimental data for mineral oil 
(ASME 1953), and can be used to describe the behaviour of many viscous liquids, is 
of the form (Dowson & Higginson 1977) 

where po is the dehsity of the fluid under ambient pressure, and Oi is a compressibility 
parameter which is tabulated (see Weast 1974) for various liquids and is typically on 
the order of atm-'. The absolute value of the pressure in the denominator of (4) 
constrains the liquid density above a value of 2p0/3 for the rebound portion of the 
collision, during which the surfaces recede and the pressure drops below zero. In  
practice, however, the density will not reach this value because cavitation will occur 
when the tensile pressure during rebound drops below the vapour pressure of the 
liquid. Thus, (4) does not apply for large negative pressures. 

Until recently, the most common method of describing the variation of viscosity 
with pressure was by means of an exponential relation, p = poexp (Cp) ,  where po is 
the viscosity of the fluid under ambient pressure and C is a coefficient dependent on 
the fluid type (Hersey & Hopkins 1954). This relation has been extensively used in 
theoretical lubrication studies but it overestimates the viscosity by several orders of 
magnitude at high pressures (Chu & Cameron 1962). In  order to alleviate this 
inaccuracy, a power-law relationship, which more closely approximates experimental 
data, has been proposed (Chu & Cameron 1962): 

where the viscosity coefficient $ is a tabulated function of temperature for various 
liquids and is typically on the order of atm-'. Because of its improved accuracy 
a t  high pressures, the power-law expression has been chosen over the exponential 
relation in the present analysis, although the results are qualitatively independent of 
which viscosity-pressure relationship is chosen. If during rebound the magnitude of 
the tensile pressure approaches $-', then the viscosity is predicted by ( 5 )  to approach 
zero. Clearly, therefore, this equation does not apply a t  very large negative pressures. 
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Note that we only consider liquids in this analysis of density and viscosity effects. 
Scaling arguments show that before any significant change can occur in these 
properties during collisions between aerosols, the separation between the surfaces 
drops below the mean free path of the gas molecules, the rarefied gas remaining in 
the gap slips out, and the spheres make physical contact (Hocking 1973 ; Barnocky 
& Davis 1 9 8 8 ~ ) .  Moreover, (4) and ( 5 )  provide direct relationships between the 
instantaneous fluid properties and the instantaneous pressure. This implies that the 
fluid equilibrates rapidly with respect to the timescale of the pressure changes. 

To complete the formulation of the basic model, we also need the kinematic 
equations, which describe the relative motion of the undeformed surfaces of the solid 

(6) 
spheres : 

m- = -F( t ) ,  
dv 
dt 

dx 
- = -v(t), 
dt (71 

where v(t)  is the dimensionless relative velocity of the centre of masses of the two 
spheres toward one another, m is the reduced mass of the two spheres, and 

F ( t )  = 2n f ( r ,  t) r dr IOrn 
is the total normal force exerted between the spheres. It is assumed in (6) that the 
motion of the particles during the final stages of collision is due to their inertia and 
that the effects of any bulk flow or external force such as gravity are negligible. 

Davis et al. (1986) solved (1)-(3), (6) and (7) under conditions of constant fluid 
properties, using asymptotic techniques in the limit of small deformation of the 
spheres, and numerical methods in the general case for which the deformation was 
comparable with the gap size. We have performed a similar analysis to investigate 
the influence of the pressure dependence of the fluid density and viscosity on 
collisions between solid spheres. Key issues that are addressed include whether or not 
fluid compression alone may be significant enough to cause a bounce subsequent to 
collision, and the degree to which the viscosity and density changes affect the overall 
collision and rebound process. 

3. Method of solution 

p = po), the pressure profile which develops between two colliding rigid spheres is 
As demonstrated by Davis et al. (1986) for constant fluid properties (i.e. ,u = ,uo, 

which is a function of both the relative velocity of the spheres, v, and the separation 
distance, x, each of which decreases with time according to the solution of (6) and (7). 
The hydrodynamic resistance which results from this pressure distribution is F = 
6np0 a2v/x. To obtain a relationship between the relative velocity and the gap width, 
we divide (7) by (6), and then, utilizing the above expression for the hydrodynamic 
force, F ,  we may integrate the result to obtain 
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where we have used the initial conditions v = vo at x = xo. I n  (8), the Stokes number, 
St = mvo/6~poa2, provides a measure of the inertia of the particles relative to the 
viscous forces in the fluid. The Stokes number is also a measure of the relative 
importance of the initial particle kinetic energy to  the inelastic work required to 
squeeze the fluid out of the gap, St = mv;/Fx,, where F is given by the asymptotic 
analysis above. This leads to a prediction that particles experience a detectable 
rebound when St 3 2 and have suficient energy to rebound past xo when St 3 4. 

3.1,  Order-of magnitude analysis and scaling 
The asymptotic solution above is valid only for small fluid property changes and 
nearly inelastic collisions. I n  this section, we determine under what conditions 
density and viscosity changes will significantly affect the collision. From (2), Hertz 
contact theory of linear elasticity, the magnitude of solid deformation of a spherical 
particle, w,, is O(pB(ax)t) near the axis of symmetry, where p is a characteristic fluid 
pressure in the narrow gap. Using (4), an order-of-magnitude estimate for the change 
in the separation distance between the two surfaces due to  liquid compression, w,, is 
O(0ixp) near the axis of symmetry, where w, E h ( p / p o - l ) .  Using the dynamic 
lubrication pressure scale, p = O(puv/x2), these estimates lead to the separation 
lengthscales, x1 = (48,uub)5 and x2 = (Lpav);, a t  which solid deformation and fluid 
compression, respectively, become comparable with the separation distance, x. (The 
factor of 4 in the expression for x1 is a matter of choice and comes directly from (Z).) 
Similarly, viscosity effects become important a t  a separation of x ,  = (Gpav);, 
although an estimate of the physical change in the gap due solely to viscosity effects 
cannot be readily obtained from scaling arguments. Thus, if the value of the inertia 
parameter, St, is sufficiently large that the relative velocity is non-negligible when x 
becomes as small as x2 or x3 (see (8)), and if x2 and/or x3 is comparable with or larger 
than x l ,  the density and/or viscosity changes in the fluid are expected to have a 
significant influence on the collision and rebound process. Estimates of these 
lengthscales for typical physical systems are given below. 

Barnocky & Davis (1988b) performed an experiment in which small stainless steels 
balls were dropped from varying heights onto a flat plate covered with a thin layer 
of mineral oil. They varied the drop height until the critical height that allowed the 
balls to penetrate and just bounce out of the fluid layer was determined. For the 
conditions used in these experiments, which are similar to those that might be 
present in a lubricated bearing and which had physical parameters on the order of 
a = 0.1 em, p = 10 g/cm s, w = 100 cm/s, Oi = loplo cmz/dyne, $ = cm2/dyne, 
and 8 = cm2/dyne, the critical separations defined above are: x1 x 0.4 pm, 
xz z 1 pm, x3 x 0.3 pm. For conditions that more closely approximate those present 
during inertial filtration of small aerosol particles when either the filter fibres or 
particles have been coated with a liquid to increase the capture efficiency (Gal, 
Tardos & Pfeffer 1985), typical physical parameters are a = 3 pin, p = 100 cP, 
v = 50 cm/s, Oi = 10-l' cm2/dyne, $ = 10-l' cm2/dyne, and 8 = cm2/dyne, and 
the corresponding critical separations are all approximately equivalent : x ,  x x2 x x3 
x 0.01 pm. Hence, in both lubrication and inertial filtration systems, fluid 
compression, viscosity increase effects, and solid deformation appear to  become 
important a t  approximately equivalent separations. Moreover, a t  a separation of 
x = 0.01 pm for the typical conditions given above for inertial filtration of aerosols, 
the pressure in the fluid gap between the particle and collecting surfaces is on the 
order of lolo dyne/cm2 x lo4 atm. (Similarly, pressures of lo4 atm are characteristic 
for collisions between 0.1 cm particles a t  separations of 1 pm as in the experiment of 
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Barnocky & Davis 1988b.) This pressure is sufficiently high to cause significant 
changes in the fluid density and viscosity. Thus, this approximate analysis suggests 
that a more thorough investigation of the influence of fluid compression and viscosity 
changes on the dynamic collision process is warranted, as given in the following 
section. 

3.2. Numerical analysis 

The practical conditions cited in the previous section suggest that density and 
viscosity changes strongly affect the collision and produce or enhance rebound. Since 
the analysis of Davis et al. (1986) is valid so long as the density and viscosity are only 
slightly different from unity, a numerical solution to (1)-(7) must be developed. 
These calculations are greatly simplified by making the governing equations 
dimensionless. Using xo as a characteristic length in the axial direction, (axo)& as a 
characteristic length in the radial direction, and oo as a characteristic relative 
velocity , the resul ting non-dimensi onal parameters are 

where u and 7 represent measures of the density and viscosity changes relative to 
changes in the hydrodynamic pressure, respectively, and E is a measure of solid 
elasticity introduced by Davis et al. (1986). However, a rescaling is necessary to 
facilitate the numerical computations since the choice of xo is somewhat arbitrary. 
For example, when only the deformation is significant, a more appropriate axial 
lengthscale is x1 = (48p0 a ~ v o ) ~ ,  which, when used in place of xo, yields a value of unity 
for e. Similarly, when only density or viscosity changes are important, more 
appropriate lengthscales are x2 = (&p0 avo); and x3 = (tpo avo);, respectively. Using 
the appropriate lengthscale when considering only either density, viscosity or 
deformation effects, the numerical routine need be executed for only a single value 
of the corresponding parameter u, 7,  or E for each value of St. The solution for smaller 
values of these parameters may then be computed simply by matching the numerical 
computations with the asymptotic solution for small deformations. 

We have developed a robust implicit, time-stepping algorithm to solve (1)-(7), 
utilizing finite-difference discretization of the time and space variables, and Newton’s 
method to iteratively compute a solution a t  each point in time. The size of the time 
step was adjusted so that the local time-truncation error in the solution of the 
hydrodynamic force, F ( t ) ,  was kept below 1 YO. At each new time, the velocity and 
undeformed separation of the spheres were computed using (6) and (7) by forward 
differencing, and the pressure, density, viscosity and deformation profiles were 
iteratively computed from (1)-(5) starting with an initial guess based on the solution 
a t  the previous time. Equations (4) and ( 5 )  were used during rebound as well as 
approach, even though they are not expected to apply for very large negative 
pressures. The implications of this are discussed in the following section. 

4. Results and discussion 
In order to develop a simple estimate of the validity of our numerical results, we 

first utilize an approximate criterion for rebound resulting solely from the elastic 
deformation and restoration of two colliding spheres, as outlined by Barnocky &, 
Davis (19886). They proposed that in order for particles to rebound, they must have 
sufficient inertia to deform significantly. Since the separation distance at  which 
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significant deformation of the solid surfaces occurs is xl, they predicted that only 
those particles with sufficient inertia to come within a separation x1 will bounce, 
Particles brought to rest by lubrication forces prior to reaching x1 were not predicted 
to  bounce because, under these conditions, insufficient energy becomes stored in 
elastic deformation prior to the spheres coming to rest. Using (8), collisions for which 
the particles have sufficient inertia to  reach x1 must satisfy St > St: where 

St: = In (xo/xl) = -fin ( E ) .  (9) 

When St = St:, the particles have just enough energy to reach x1 before coming to 
rest. For St > St:, the particles are predicted to reach x1 with a non-zero velocity, 
and the remaining energy becomes stored as elastic deformation of the solid, which, 
when released, causes the particles to rebound (here, rebound is defined as a reversal 
in the direction of the particle velocity). In  order for the spheres to rebound back to 
their initial separation, xo, an even higher value of St is required owing to the 
additional fluid dynamic resistance to relative motion as the surfaces recede from one 
another. However, during energetic collisions such as those that occur during the 
inertial filtration of liquid-coated aerosol particles (Gal et al. 1985), the tensile 
pressure required to draw fluid back into the gap as the spheres rebound can be as 
high as several hundred atmospheres. The fluid will easily cavitate at these high 
tensile stresses, and the fluid dynamic resistance to relative motion during the initial 
stages of rebound will be substantially less than the resistance during approach. 
Dowson & Taylor (1979) illustrate the complexity of the cavitation phenomenon 
which is beyond the scope of the current analysis and warrants further study. 

Although the rebound phenomenon is complicated when including other effects 
which can strongly influence the collision, such as fluid density and viscosity changes, 
the above analysis can be extended to obtain an estimate for the corresponding 
critical Stokes number which gives rebound when one of these effects dominates the 
collision process. For example, if conditions are such that the fluid compresses 
significantly and the spheres are brought to rest before either elastic deformation or 
viscosity changes become significant enough to affect the collision, rebound will 
occur owing to a relaxation of the compressed fluid for all St > St:, where 

St: = In ( x o / x 2 )  = -gin (a). 

St,* = In (xo/x3)  = -+ln (7). 

(10) 

(11) 

Similarly, if viscosity effects are dominant, rebound will occur for all St > St;, where 

Note that an increase in viscosity cannot cause a bounce per se, since it only 
represents a resistance to flow rather than a storage of energy. However, when the 
gap between the colliding spheres becomes comparable with x3, the viscosity of the 
fluid in the gap will become so large that the fluid will behave nearly as a solid. 
Rather than squeezing this fluid out of the gap, further approach of the spheres will 
result in their elastic deformation. Then, once the relative velocity of the spheres has 
reduced to zero, near a separation x3, any energy stored in compression or 
deformation will cause the spheres to rebound. The estimates given by (9)-( 11) 
provide good comparisons for the full numerically generated rebound predictions 
developed in the next two subsections. 

4.1. Numerical results for rigid spheres 
We first consider the influence of only the pressure-dependent fluid density on the 
dynamic collision between two rigid spheres. Of particular interest is whether or not 
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FIGURE 2. The relative fluid density profile at several instants in time for a collision between 
rigid spheres in an isoviscous compressible fluid with St = 5 and a = lO-*(St: = 2.3). 

sufficient energy may become stored in the compressed fluid to allow for a significant 
bounce to occur. Figure 2 shows the relative density profile as a function of the 
dimensionless distance from the centreline for the specific case of St = 5, a = a t  
several instants in time. A t  t = 0, the fluid is only slightly compressed and the density 
profile can be determined using the asymptotic theory developed previously. As time 
progresses, and the gap between the surfaces narrows, the fluid pressure and there- 
fore density increase. The value of the density a t  the centreline reaches p/po = 1.3, 
which is the maximum allowed by the constitutive relation (4), a t  vot / so  w 1.30. 
The increased fluid pressure causes the spheres to slow down, and their motion is 
arrested (v = 0) when vnt/x,  x 1.35 (see figure 3). At this time, the pressure has 
decreased from its maximum value (but is still positive) and so the fluid is expanding. 
The spheres subsequently bounce owing to the expansion of the fluid. When vo t/zo 
reaches a critical value oft, w 1.49, the density near the centreline drops below po, 
because a negative pressure develops which draws fluid back into the narrow gap 
between the receding surfaces of the rebounding spheres. This tensile stress will also 
cause the fluid to cavitate, assuming that its magnitude becomes greater than 
approximately one atmosphere. Since cavitation was not directly included in the 
analysis, the results for vn t /xo > t ,  are not expected to be accurate. Fortunately, this 
is not a major drawback, because the key features of arrest and rebound occur just 
prior to this time. As the spheres come to their final equilibrium position, both the 
kinetic energy of the moving spheres and the potential energy stored as fluid 
compression are completely dissipated in the viscous fluid. 

17-2 
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FIGURE 3. The dimensionless centreline separation as a function of the dimensionless time for 
collisions between rigid spheres in an isoviscous compressible fluid. 

The dynamics of the collision between rigid spheres in a compressible fluid is more 
clearly illustrated by figure 3, a plot of the dimensionless separation at  the centreline, 
x/xo,  as a function of dimensionless time, w,, t/x,, for St = 1, 3, and 5 and a = 0,  
and low2. Analytical solutions for the curves in figure 3 corresponding to a = 0 are 
given by (9) of Davis et aZ.( 1986). For these limiting cases, the minimum distance of 
approach is x /xo  = exp(-St), which is also the final separation since the fluid is 
incompressible and no rebound occurs. When the particle inertia or fluid 
compressibility is small (St < St: = -$ln (a ) ) ,  fluid compression has a negligible 
influence on the collision process and does not produce a rebound. On the other hand, 
when St St:, fluid compression can alter the trajectories of the approaching spheres 
and even cause a small bounce to occur. For St = 3 and a = lO-*(St,* = 2.3), for 
example, the relative approach velocity of the spheres at a given separation is greater 
than for a = 0 since the fluid can compress as well as squeeze out of the gap, thereby 
offering less resistance (see Barnocky 1988). Under these conditions, the spheres 
never reach the minimum separation predicted for a collision in an incompressible 
fluid (x /x ,  = exp( -St)) ,  but instead bounce a t  a slightly larger separation. The 
magnitude of the bounce is limited owing both to the relatively small solid inertia and 
to the fact that much of the compression energy is released prior to rebound. For 
St = 5 and a = the spheres again have a higher relative velocity a t  a given 
separation during the initial stages of the collision, and the gap reduces to a value less 
than x/xo = exp ( -St) before rebound occurs. During the later stages of rebound 
(v,t/x, > t c ) ,  the spheres experience resistance to relative motion due to the tensile 
pressure in the gap between them. This brings them to rest at a final equilibrium 
separation. The final separation will be greater than that shown in figure 3 when 
cavitation occurs. 

Figure 4 illustrates the dependence of the dimensionless maximum rebound 
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FIGURE 4. Maximum relative rebound velocity for collisions between rigid spheres in a compressible 
fluid as a function of the inertia parameter, St, for various values of the compressibility parameter, a. 

velocity, v,,/’v,,, on the parameters Xt and a. The maximum rebound velocity, vmr, 
is defined as the largest value of -v that the spheres obtain as they rebound from 
one another. No rebound occurs (vmr = 0) for all collisions for which Xt 6 St,*(a). For 
a = 10-2(St,* = 2.3), a non-zero rebound velocity occurs for all St > 1.5. For this 
value of a,  the dimensionless rebound velocity increases rapidly as St increases until 
it reaches a maximum of only 0.032 when St = 5. For more energetic collisions (i.e. 
St % St:), the minimum distance of approach is less, but the fluid in the gap near the 
centreline cannot compress further since it is a t  or near its maximum density of p/pn 
= 1.3. Since less energy can be stored in the form of fluid compression in a narrower 

gap, a smaller maximum rebound velocity occurs. The other curves (a  = and 
w4), which correspond to less compressible liquids and therefore relatively smaller 
rebound velocities, exhibit similar behaviour. Thus, although fluid compression alone 
can result in the rebound of two colliding rigid spheres, this rebound is generally very 
weak. Cavitation does not affect the maximum rebound velocity, since cavitation 
only occurs when the pressure of the liquid in the gap drops below its vapour 
pressure. By the time this occurs, the pressure in the gap is already less than the 
ambient pressure, and the resulting suction force is slowing down the rebounding 
spheres. 

The final plot of this section (figure 5 )  illustrates the changes that may occur to the 
fluid viscosity during a collision between rigid spheres. This diagram shows several 
dimensionless viscosity profiles a t  different times for the specific case St = 3.5 and 
7 = 10-3(Xt,* = 3.5). The fluid under these conditions was treated as incompressible 
(a  = 0). At vn t /z ,  = 1.1,  the relative viscosity a t  the centreline attains its maximum 
value of approximately 300, causing it to  behave much like an elastic solid. The fluid 
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FIGURE 5. The relative viscosity profile at various instances in time for a collision between 
rigid spheres in an incompressible fluid with St = 3.5 and 7 = 10-a(St; = 3.5). 

near r = 0 is extremely resistant to  flow and strongly resists the close approach of the 
spheres. For St > St:, this dramatic increase in viscosity concentrated near the 
centreline is even greater and causes difficulties in the numerical solution. 

4.2. Results for elastic spheres 

There is a remarkable difference in the characteristics of the rebound following the 
collision between elastic spheres and those associated with the rebound of rigid 
spheres caused solely by fluid compression. This difference is illustrated in figure 6, 
which shows the total dimensionless force between colliding spheres as a function 
of time for 01 = 7 = 0, St = 5,  and various E .  For E < lO-'(St: % St: = 2.3, 
z1 4 z2), the elasticity of the spheres is too small to affect the rebound process. This 
weak rebound is due to fluid compression and expansion, as discussed in § 4.1. When 
vo t /zo 2.2,  the spheres have essentially come to rest, although damped oscillations 
occur which have a negligible effect on the final position. For E 2 lO-'((st: < Xt = 5) ,  
the energy stored in elasticity dominates that stored in compressibility, and a more 
significant rebound results. For E = 10-4(St: = 3.7), the maximum force during 
approach is only 70 % of that for inelastic collisions, but the maximum suction force 
during rebound increases by a factor of almost 5. For more elastic collisions, the 
influence of fluid compression, and the corresponding energy stored in the conipressed 
fluid, is relatively small. The maximum force continues to decrease, and the 
maximum suction force during rebound also decreases since the minimum distance 
of approach increases and the fluid can more easily enter this larger gap. We caution, 
however, that the suction (negative) forces shown in figure 6 may not be realized in 
practice because of cavitation. 

The remarkable difference in collisions of elastic spheres compared to those of rigid 
spheres is also exemplified in figure 7, a diagram of the minimum separation of 
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FIQURE 6. The dimensionless hydrodynamic force as a furwtion of dimensionless time for 
St = 5, a = 7 = 0 and several values of the elasticity parameter, E .  

approach and maximum rebound separation a t  the centreline as a function of St. The 
straight, solid line corresponds to both the minimum and maximum separation of 
rigid spheres in incompressible fluids. The pair of dotted lines form an envelope and 
correspond to the minimum (lower line) and maximum (upper line) centreline 
separations which occur during the approach and rebound, respectively, of rigid 
spheres ( E  = 0) in a compressible fluid with a = 10-2(St,* = 2.3). During collisions for 
which St G4.5, the spheres bounce slightly owing to  fluid compression and 
decompression before they reach x / x o  = exp ( -St). For St > 4.5, the minimum 
separation drops below that of the incompressible case, since the fluid can both 
compress as well as squeeze out of the gap, causing the maximum pressure to  increase 
dramatically. The maximum rebound separation increases relative to the cor- 
responding minimum separation but its absolute value decreases with increasing St. 
In  contrast, the pair of dashed lines correspond to the minimum and maximum 
separations which occur during the collision between elastic spheres in an 
incompressible fluid (a = 0) with e = 10-2(Str = 1.8). For these elastic collisions, the 
minimum separation is much larger and is relatively independent of St €or St + St:. 
The maximum rebound separation decreases with increasing St for small values 
of St owing to the increased inertia bringing the spheres closer together, but it 
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FIGURE 7 .  The minimum centreline separation prior t o  rebound and maximum centreline 
separation subsequent to  rebound as functions of the inertia parameter, St. 

increases steadily for St 2 3.0 owing to the increased deformation and rebound for 
the more energetic collisions. For St > 7 ,  this maximum rebound separation is larger 
than the original dimensionless separation of unity. This separation will be even 
larger when cavitation occurs. Finally, the dashed-dotted lines, corresponding to the 
minimum and maximum separations when the effects of fluid compression, viscosity 
changes, and solid elastic deformation are all included, show that fluid property 
changes have a rebound-enhancing effect, but that the qualitative features of the 
collision dynamics are similar to those when the fluid properties are constant and 
only solid deformation is included. 

Figure 8, a plot of the dimensionless maximum rebound velocity, ZI,,/V~, as a 
function of St, further illustrates the rebound enhancement due to fluid compression 
and viscous increases. For comparison, the solid lines represent the maximum 
rebound velocities which occur during incompressible, isoviscous elastic collisions for 
various c. As St increases, the spheres naturally rebound with a greater velocity 
because their increased inertia leads to  higher pressures and hence more energy 
stored in elastic deformation prior to rebound. During the early stages of rebound, 
the centres of masses of the two spheres are moving apart, but the deformed surfaces 
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FIGURE 8. The maximum relative rebound velocity of elastic spheres as a function of the inertia 
parameter, St. The solid lines are for constant fluid properties (a = 7 = ()),.the dotted lines are for 
compressible, isoviscous fluids (a = lo-', 7 = 0) and the dashed lines are for variable fluid density 
and viscosity (a  = 7 = 7 x 

are still moving toward one another as the stored elastic energy is released and 
converted into kinetic energy and viscous work. The maximum rebound velocity 
occurs at the time when the lubrication force drops to zero. As mentioned previously, 
any cavitation would occur after this time and so would not affect the maximum 
rebound velocity. When the influence of fluid compression (a = is included in 
the model, as shown by the dotted lines, the rebound velocity is increased. When 
B = 10-2(St: = 1.8) and a = 10-2(St: = 2.3), only a slight enhancement of the rebound 
velocity is predicted for all values of St. However, for E = 10-4(St: = 3.7), and the 
same value of a = lO-*(St,* = 2.3), the maximum rebound velocity is increased by 
about 20% over that for an incompressible fluid at  St = 10. Moreover, a t  low St 
(e.g. St = 3), for which St > St,* but St < St:, a weak but measurable rebound 
resulting primarily from fluid compression is predicted, whereas no rebound is 
predicted to occur had the fluid been treated as incompressible. This effect is even 
more dramatic for E = 

Although there is a small enhancement of rebound due to fluid compression 
between elastic spheres, there is a much greater effect on the collision between elastic 
spheres as a result of the increase in viscosity with pressure. Two exemplary cases of 
the influence of fluid viscosity are shown in figure 8. One dashed line corresponds to 
B = lop2, a = lop2 and q = lOP3(St,* = 3.5) and shows that there is only a small 
enhancement of rebound when viscosity effects are small and St: + St;. The other 

and q = lo-'. 
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FIGURE 9. The deformed gap profile at several instances in time for an elastic collision with 
St = 6, e = a = 0, and 9 = 0 (solid lines) and 7 = 6 x (dashed lines). 

dashed line in figure 8, corresponding to = 7 x 10-3(~t,* = 2.5) and the same values 
of a and E ,  clearly shows that as St +St:, a significant enhancement of the rebound 
velocity occurs. This enhancement is primarily due to the sharp increase in viscosity 
near the centreline of the two spheres, which serves to strongly resist their relative 
motion and to cause additional elastic deformation. 

Figure 9 shows this increased-viscosity effect more clearly. This figure gives the 
dimensionless gap profile as a function of radial distance a t  several times for the 
specific case of St = 6 and E = 10-3((str = 3.5). The solid lines in this figure correspond 
to incompressible, isoviscous, elastic collisions ; whereas the dashed lines show the 
influence of pressure-dependent viscosity with 7 = 6 x = 3.7).  For short 
times (v,t/z, ,< 0.7), the profiles are identical. At later times (e.g. v o t / x ,  = 2.1), the 
isoviscous case reveals that the noses of the two spheres have flattened owing to 
the high pressure in the fluid between the approaching surfaces. This centreline 
deformation is increased dramatically when the fluid viscosity is allowed to increase 
with pressure, and a pronounced dimple forms around the axis of symmetry. The 
marked increase of viscosity with pressure results in a fluid which behaves much like 
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FIGURE 10. The minimum distance of approach (solid lines) and maximum rebound separation 
(dashed lines) at the centreline as functions of the ratio of the viscosity and deformation 
lengthscales, xs/xl, for St = 3 and 6. 

a solid - very resistant to flow - and prevents the nose of the sphere from approaching 
further. The fluid near the centre is nearly trapped in this dimple ; the sphere bounces 
from a larger minimum centreline separation, and a larger maximum rebound 
separation is reached. This dimple formation and increase in minimum separation 
were also predicted by Lee & Cheng (1973) in the investigation of two lubricated 
cylinders. 

Finally it is informative to look a t  the relative influences of the effects of fluid 
viscosity changes and solid elasticity. Figure 10 shows a plot of the minimum 
distances of approach and maximum rebound separations which occur a t  the 
centreline for St = 3 and 6 as functions of the ratio of the viscous and elastic 
lengthscales: x,/x,. For x3 4 xl, the spheres do not become close enough for 
significant viscosity changes to occur, and elasticity effects dominate the collision 
process. However, as x3/z1 -+ 1,  The influence of viscosity changes on the collision 
becomes dramatic, resulting in increased minimum and maximum separations. This 
increase is extremely abrupt and results from the increased resistance to flow of the 
fluid. As discussed previously, the maximum separations subsequent to rebound will 
be even greater when cavitation occurs. 

4.3. Concluding remarks 
It has been shown that the large hydrodynamic pressures required to deform the 
surfaces of two elastic spheres as they collide also dramatically increase the density 
and viscosity of the fluid in the gap. Whereas the magnitude of the elastic 
deformation of the surfaces was previously thought to be the primary factor in 



518 G .  Barnocky and R. H .  Davis 

determining whether or not the spheres rebound, the changes which occur to the fluid 
density and viscosity may also play important roles. In  particular, changes in the 
fluid density alone can cause rebound of even perfectly rigid spheres, although this 
rebound is relatively weak. The viscosity of the fluid in the gap between the colliding 
spheres may increase by several orders of magnitude very near the centreline, 
causing the fluid to behave much like an elastic solid and producing a pronounced 
dimple of the elastic surface. 

Under typical conditions, such as those present during inertial filtration of aerosols 
where either the particles or surfaces have been covered with a viscous liquid, the gap 
lengthscales a t  which solid deformation, fluid compression and viscosity become 
important are approximately equivalent. Therefore, each of these effects plays an 
important role in influencing the collision and rebound process. Under these 
conditions, the changes in fluid density and viscosity with pressure lead to moderate 
quantitative changes in the collision parameters such as the minimum distance of 
approach, the value of St required for rebound, and the maximum rebound velocity 
achieved. However, the qualitative features of the collision and rebound process are 
generally the same as those predicted with constant fluid properties. In contrast, 
collisions involving absolutely rigid spheres have drastically different characteristics 
to those involving slightly elastic spheres. 

This work was undertaken with support of the National Science Foundation under 
grants CBT-8414743 and CBT-845 10 14. 
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